119 research outputs found

    Bird migration advances more strongly in urban environments

    Get PDF
    Urbanization has a marked effect on the reproduction and other ecological and behavioural traits of many living organisms, including birds. In migrant birds, survival and reproductive output is influenced by the (mis)synchronization of arrival with the availability of resources. Many recent studies have shown that arrival timing is related to temperatures en-route and at destination. Because urban areas are “heat islands”, with higher temperatures that influence earlier vegetation and invertebrate development, this should favour earlier arrival of migrant birds to cities rather than to rural areas. In this paper, we analysed differences between urban and rural habitats in mean dates and trends of first arrival dates of 18 species of migratory bird species in western Poland during 1983–2010. For many individual species, and overall, mean first arrival date was significantly earlier in rural areas than in urban areas (significant for 11 species). However, the trend towards earlier first arrival dates was stronger in urban areas for 15 of the 18 species (significantly stronger in four species). Consequently, arrival dates in urban areas are fast approaching, or have now matched or passed those in rural areas. These findings suggest that recent environmental changes may have more rapidly changed the migratory habits of birds occupying urban habitats than those occupying rural habitats

    Free neutron decay and time reversal violation

    Get PDF
    Both components of the transverse electron polarization have been measured in free neutron decay. The T-odd, P-odd correlation coefficient associated with polarization component perpendicular to the neutron polarization and electron momentum, was found to be R = 0:006 0:012 0:005. This value is consistent with time reversal invariance, and significantly improves limits on the relative strength of imaginary scalar couplings in the weak interaction. The value obtained for the T-even, P-even correlation coefficient connected with the second transversal polarization component, N = 0:065 0:012 0:004, agrees with the Standard Model expectation providing an important sensitivity test of the experimental setup

    An Improved Neutron Electric Dipole Moment Experiment

    Full text link
    A new measurement of the neutron EDM, using Ramsey's method of separated oscillatory fields, is in preparation at the new high intensity source of ultra-cold neutrons (UCN) at the Paul Scherrer Institute, Villigen, Switzerland (PSI). The existence of a non-zero nEDM would violate both parity and time reversal symmetry and, given the CPT theorem, might lead to a discovery of new CP violating mechanisms. Already the current upper limit for the nEDM (|d_n|<2.9E-26 e.cm) constrains some extensions of the Standard Model. The new experiment aims at a two orders of magnitude reduction of the experimental uncertainty, to be achieved mainly by (1) the higher UCN flux provided by the new PSI source, (2) better magnetic field control with improved magnetometry and (3) a double chamber configuration with opposite electric field directions. The first stage of the experiment will use an upgrade of the RAL/Sussex/ILL group's apparatus (which has produced the current best result) moved from Institut Laue-Langevin to PSI. The final accuracy will be achieved in a further step with a new spectrometer, presently in the design phase.Comment: Flavor Physics & CP Violation Conference, Taipei, 200

    In-situ characterization of the Hamamatsu R5912-HQE photomultiplier tubes used in the DEAP-3600 experiment

    Get PDF
    The Hamamatsu R5912-HQE photomultiplier-tube (PMT) is a novel high-quantum efficiency PMT. It is currently used in the DEAP-3600 dark matter detector and is of significant interest for future dark matter and neutrino experiments where high signal yields are needed. We report on the methods developed for in-situ characterization and monitoring of DEAP's 255 R5912-HQE PMTs. This includes a detailed discussion of typical measured single-photoelectron charge distributions, correlated noise (afterpulsing), dark noise, double, and late pulsing characteristics. The characterization is performed during the detector commissioning phase using laser light injected through a light diffusing sphere and during normal detector operation using LED light injected through optical fibres

    Subcellular compartmentation of glutathione in dicotyledonous plants

    Get PDF
    This study describes the subcellular distribution of glutathione in roots and leaves of different plant species (Arabidopsis, Cucurbita, and Nicotiana). Glutathione is an important antioxidant and redox buffer which is involved in many metabolic processes including plant defense. Thus information on the subcellular distribution in these model plants especially during stress situations provides a deeper insight into compartment specific defense reactions and reflects the occurrence of compartment specific oxidative stress. With immunogold cytochemistry and computer-supported transmission electron microscopy glutathione could be localized in highest contents in mitochondria, followed by nuclei, peroxisomes, the cytosol, and plastids. Within chloroplasts and mitochondria, glutathione was restricted to the stroma and matrix, respectively, and did not occur in the lumen of cristae and thylakoids. Glutathione was also found at the membrane and in the lumen of the endoplasmic reticulum. It was also associated with the trans and cis side of dictyosomes. None or only very little glutathione was detected in vacuoles and the apoplast of mesophyll and root cells. Additionally, glutathione was found in all cell compartments of phloem vessels, vascular parenchyma cells (including vacuoles) but was absent in xylem vessels. The specificity of this method was supported by the reduction of glutathione labeling in all cell compartments (up to 98%) of the glutathione-deficient Arabidopsis thaliana rml1 mutant. Additionally, we found a similar distribution of glutathione in samples after conventional fixation and rapid microwave-supported fixation. Thus, indicating that a redistribution of glutathione does not occur during sample preparation. Summing up, this study gives a detailed insight into the subcellular distribution of glutathione in plants and presents solid evidence for the accuracy and specificity of the applied method

    Measurement of the permanent electric dipole moment of the neutron

    Get PDF
    We present the result of an experiment to measure the electric dipole moment EDM) of the neutron at the Paul Scherrer Institute using Ramsey's method of separated oscillating magnetic fields with ultracold neutrons (UCN). Our measurement stands in the long history of EDM experiments probing physics violating time reversal invariance. The salient features of this experiment were the use of a Hg-199 co-magnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic field changes. The statistical analysis was performed on blinded datasets by two separate groups while the estimation of systematic effects profited from an unprecedented knowledge of the magnetic field. The measured value of the neutron EDM is d_{\rm n} = (0.0\pm1.1_{\rm stat}\pm0.2_{\rmsys})\times10^{-26}e\,{\rm cm}

    Radon backgrounds in the DEAP-1 liquid-argon-based Dark Matter detector

    Full text link
    The DEAP-1 \SI{7}{kg} single phase liquid argon scintillation detector was operated underground at SNOLAB in order to test the techniques and measure the backgrounds inherent to single phase detection, in support of the \mbox{DEAP-3600} Dark Matter detector. Backgrounds in DEAP are controlled through material selection, construction techniques, pulse shape discrimination and event reconstruction. This report details the analysis of background events observed in three iterations of the DEAP-1 detector, and the measures taken to reduce them. The 222^{222}Rn decay rate in the liquid argon was measured to be between 16 and \SI{26}{\micro\becquerel\per\kilogram}. We found that the background spectrum near the region of interest for Dark Matter detection in the DEAP-1 detector can be described considering events from three sources: radon daughters decaying on the surface of the active volume, the expected rate of electromagnetic events misidentified as nuclear recoils due to inefficiencies in the pulse shape discrimination, and leakage of events from outside the fiducial volume due to imperfect position reconstruction. These backgrounds statistically account for all observed events, and they will be strongly reduced in the DEAP-3600 detector due to its higher light yield and simpler geometry
    • …
    corecore